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Abstract. In the paper we consider some nonlinear heat transfer problems related to combustion. At first, the 
coincidence of the exact solution of the studied boundary value problem with the approximate solution – the 
designed exponential type spline function is proved. The second problem under question is the combustion 
process with Arrhenius kinetics using single step chemical reactions. The exothermic chemical reactions are 
modelled by single step of fuel and oxidant, at the inlet the constant axial velocity is given. Numerical solution 
with Matlab routines “pdepe” and exponential type spline function are obtained. Some numerical and 
experimental results are given. As a practical example of solving a nonlinear system of the parabolic type of 
PDE the calculation of temperature and moisture in the wood sample in its burning process is considered. The 
profiles of temperature and moisture depending on time in the different places of wood sample are obtained. 

Keywords: conservative averaging method; diffusion-convection boundary value problem; exothermic chemical 
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Introduction 

The solutions of 1D diffusion and diffusion-convection boundary value problems (BVP) for 
partial differential equations (PDE) are applicable to a number of practical problems / tasks related to 
mathematical modelling of combustion processes [1-3]. For example, the authors of the present article 
have studied transfer problems involving combustion of gypsum board products in previous 
publications – the heat transfer problem for two layered gypsum board products exposed to fire [4], 
the heat and moisture distribution problem in the drying process for porous two layered gypsum board 
products [5]. In recent years, based on a general approach to modelling flame through chemical 
reactions [6; 7], the problems/tasks of mathematical modelling have been significantly supplemented 
by modelling biomass combustion processes with reaction diffusion equations based on gas dynamics 
components, temperature, chemical response, fuel concentrations and electric field calculations using 
Matlab software mathematical and numerical support [8; 9]. 

However, in the event of a BVP solution, additional difficulties are often encountered in defining 
the conditions of continuity by modelling layered environmental (multi-layer environment) objects 
with the Matlab “pdepe” programme, and therefore, the resulting numerical solution does not describe 
the process sufficiently (correctly). This occurs, for example, by solving the diffusion-convection BVP 
of PDE in a multi-layer environment with different values of convection coefficients (different 
convection velocity) of each layer. Therefore, this publication also continues the themes that have 
been launched in the past: obtaining a solution to the boundary value problems under question in the 
form of analytical formulas, based on the conservative averaging method (CAM), namely, the 
development of the approximate solution to the BVP in the form of integral exponential or hyperbolic 
type splines. A study has been carried out in this publication on the appropriateness of the exact 
solution of the studied boundary value problem to the exponential type spline function newly created, 
and it has been demonstrated that they completely coincide in a linear case. 

It allowed the use of the created integral exponential spline function to solve BVP viewed in a 
given publication alongside the used Matlab software. As a result, in addition to the traditional math 
methods used by other authors [9; 10] (finite-difference methods, alternating direction method), new 
engineering solutions were obtained for the problems / tasks under consideration with the created 
conservative averaging method, taking into account its advantages in theoretical meaning and in terms 
of applying math software, that is, in the performance of numerical calculations. 

1. The mathematical model of diffusion-convection boundary-value problem 

We are studying diffusion-convection processes in multi-layer environments (layered 
environments), where different convection speeds are observed in vertical direction. For this purpose 
the adequate mathematical model created is suitable for modelling and investigating the following 
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physical processes: the calculation of temperature and humidity concentrations in heating, drying or 
moistening processes of wood or other multi-layer material; filtration problems, where a contaminated 
solution, which is flowing through a layered material (sorbent), is being gradually purged. 

Therefore, in this chapter we consider the diffusion-convection boundary-value problem (BVP) in 
multi-layered plane domain in z-direction with different convection velocity in every layer (1-5). In 
this case, the solution to the BVP is discontinuous and can easily be gained by solving this BVP with 
the conservative averaging method (CAM), using the exponential type spline function.  

The 1-D domain Λ = {z|0 ≤ z ≤ L} contains N layers Λi={z|z∈(zi-1, zi)}, i = N,1 , z0 = 0, zN = L. We 
consider the following partial differential equation (PDE) (1) with continuous conditions (CCs) (4-5) 
and boundary conditions (BCs) (2-3): 
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where ui = ui(z) – concentration function in every layer; 
 Di 

– constant diffusion coefficients; 
 α, β – constant mass transfer coefficients in the 3-rd type BCs;  
 u0, uL – given concentration on the boundary;  
 ri – constant convection velocity in very layer; 
 Fi – constant source terms. 

It is possible to obtain an analytical solution for the BVP (1-5) in the following form: 
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Applying BCs (2-3) and CCs (4-5), it is possible to obtain 2N-linear algebraic equations for 

determining the unknown coefficients ie  and then iC . 

According to the conservative averaging method (CAM) [11], we use the integral exponential 
type splines: 
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From BCs (2-3) at z = 0, z = L and the CCs (4-5) we can determine the unknown coefficients eiz 
and miz 

depending of the mean integral values uiz. 

Using the average integral values of the differential equation, that is, by dividing by Di, by 
integrating the equation (1) by a variable z within each layer and dividing it by each layer’s height iH , 

then applying the spline function (7), we get the following identity: 
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The mean integral values uiz follow from the identity obtained: uiz = Ci + eizqi or Ci =  uiz – eizqi. 
We can see that by inserting the found Ci, ei = eiz, mi = eiz in the analytical solution (6) formula (7) is 
obtained, that is, the created exponential type splines entirely coincide with the exact solution for the 
BVP studied. 

1.1. Numerical results for diffusion-convection BVP (1-5) in two layers 

The numeric experiment for solving the BVP (1-5) was conducted with Matlab at the following 
parameter values:  

• N = L = 2, H1 = H2 = 1, F1 = 1, F2 = 10, α = 100, β = 1, u0 = 0, uL = 1; 
• at r1 = 1, r2 = 2, D1 = D2 = 0.01, we have discontinuous solutions with u1(1) = 12.60, 

u1(1) = 6.30  and with averaged values u1z = 11.75, u2z = 3.99  (see Fig.1),  
• at at r1 = r2 = 2, D1 = 0.01, D2 = 0.02, we have continuous solutions and discontinuous 

derivatives with u1(1) = u2(1) = 6.525  and following averaged u1z = 6.43, u2z = 4.45 (see 
Fig. 2). 

  

Fig. 1. Solutions for r1 = 1, r2 = 2, D1 = D2 = 0.01 Fig. 2. Solutions for r1 = r2 = 2, D1 = 0.01, 

D2 = 0.02 

2. The mathematical model of the combustion processes with reaction-diffusion equations 

Literature sources [12; 13] deal with the following studied practical problem – the impact of the 
electric field on the combustion processes descriptors. 

The mathematical model created describes the electric field influence on the combustion 
characteristics, using the approximation of 2D axially symmetric compressible swirling flow and 
chemical reactions with account of the development of A  B ⇔ C kinetics (A – reactant,  
B – intermediate product, C – final product) downstream the cylindrical combustion chamber  

The exothermic chemical reaction [10] under question has been modelled by single step of fuel 
(F) and oxidant (O2) combining to produce products (P) and heat (H). The generic kinetic schemes of 
models with one-step chemistry are: F  P + H, where the temperature dependent rate of the reaction 
is given by one-step Arrhenius kinetics of the 1st order – K(T) = exp(–Tα/T0), Tα is the activation 
temperature. The approximated numerical solving of nonlinear problems in combustion processes as 
usually is based and has been conducted on implicit finite-difference methods and alternating direction 
(ADI) methods, reflected in [10; 12]. 

The combustion process in the present article is studied in the z-plane (0 < z < z0 = 0.1, m) with 
temperature T = T(z, t), K and simple exothermic chemical reaction by first-order Arrhenius kinetics 
with mass fraction C = C(z, t), mol of the reactant in the time t is modelled. 

The thermo-physical parameters of the heat and reaction are assumed constant: D = 5·10-5 m2·s-1  
is the molecular diffusivity, λ = 5·10-5 J·s-1·(m·K)-1  – the thermal conductivity, cp = 1000 J·(kg·K)-1 – 
the specific heat at constant pressure, B = 1.5·106 J·kg-1, A′ = 104 s-1, E = 2.5·104 J·mol-1 are the 
specific heat release, the reaction-rate pre-exponential factor and the activation energy, R – the 
universal gas constant. Let T0 = 300 K, ρ0 = 1 kg·m-3, C = C0 = 1 mol – the initial temperature, 
nominal density, mass fraction for concentration of fuel and axial velocity with uniform stream 
U0 = 0.01 m·s-1

 
at the inlet z = 0. 
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The equations were put in the dimensionless form scaling all the lengths to z0, the density to
 
ρ0, 

the velocities uz to U0, the temperature to T0, the specific heat release B to cp/T0, the reaction-rate pre-
exponential factor A′ to U0/z0, A = A′ /(z0U0), the activation energy E to R/T0.  

The following parameters are used:  

• Pe = (z0U0)/D, Le = λ/(cpDρ0) – Peclet and Lewis numbers; 
• P1 = Le/Pe, P2 = Pe

-1, β = B/( cp/T0), δ = E/(RT0) – the scaled heat-release and activation-
energy.  

For the dimensionless parameters t, x = z/z0, w = uz/u0 
we have the following 2 reactions-

diffusions equations: 
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We use the following boundary conditions: 

1. at the outlet x = x0 – ∂s/∂x = 0, s = T, C;  
2. at the inlet x = 0, T = 1, C(x, 0) = exp(–αx), α ∈ [0, 6] – is the parameter for the initial fuel amount 

in the plate.  

This approach seeks obtaining the stationary solution as the asymptotic limit of the solutions of 
the nonstationary equations in time. 

2.1. Some numerical results with reaction-diffusion equations for combustion processes 

The influence of the molecular diffusivity and thermal conductivity on the main characteristics of 
the undisturbed flame flow is obtained for β = 5. 

Such results have been obtained - that at the constant molecular diffusivity D the decreasing of the 
thermal conductivity λ(P1 = 0.01, Le = 0.1) leads to an increasing of the reaction rate and maximal 
values of the temperature, but at the constant thermal conductivity λ the decreasing of the molecular 
diffusivity D(P2 = 0.01, Le = 10) results in an increasing of the maximal density and in a decreasing of 
the temperature and reaction rate. 

For fixed values of velocities w = 1 and P1 = P2 = 0.1 the heat-reaction problem has been solved 
numerically, using finite differences approximation and due to integral exponential type spline 
function for two cases: ρ = 1/T (small Mach numbers for compressible fluid) and ρ = 1 
(incompressible flow). If ρ = 1/T, then we have for maximal and averaged values of temperature: 
Tmax = 2.957 (Fig. 3) and for ρ = 1 we have Tmax = 5.969 (Fig. 4).  

  
Fig. 3. Maximal temperature 2.957 at outlet 

depending on time t at ρ = 1/T 

Fig. 4. Maximal temperature 5.969 depending 

on time t at ρ = 1 

We have solved the 1D reaction-diffusion problem (8) (ρ = 1), where A = 5·104, β = 5, δ = 10, 
tf = 1, x0 = 2, α = 6. 

Depending on the values of the parameter w, the following temperatures are obtained: 
w = 1 (Tmax = 6.0881, T(x0, tf) = T(2, 1) = 1.295) and w = 4 (Tmax = 6.114, T(x0, tf) = T(2, 1) = 1.248), 
we have profiles of temperature depending on x  in Fig. 5, Fig. 6. 
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Fig. 5. Profile of temperature depending on x  

in fixed time t  at w = 1, α = 6, P1 = P2 = 0.1, 

Tmax = 6.008 

Fig. 6. Profile of temperature depending on x in 

fixed time t  at w = 4, α = 6, P1 = P2 = 0.1, 

Tmax = 6.114 

The higher burning temperature is achieved in the case of higher axial velocity w, as seen at the 
end time t = 1.001 (w = 4, Fig.6), the temperature is no longer decreasing, but remains constant 
throughout the x change interval, i.e. the flame spreads through the whole combustion chamber. 

3. Mathematical modelling of the wood-burning process 

We are studying the spread of temperature and moisture in the wood sample in its burning process 
[14; 15]. According to the physical process to be studied (Fig. 7) mathematical model (9) – a nonlinear 
system of the parabolic type of PDE has been developed.  

The unknown functions T = T(x, t) (temperature) and u = u(x, t) (moisture) depend on the time t 
and horizontal coordinates x, taking into account fluctuations in the heat flow and the heat source term 
that characterizes the heat spreading in the wood burning furnace.  
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where t ∈ [0, tf] – time in hours, tf = 3 h; 
 x∈ [0, L] – thickness of the sample, L = 5 dm; 
 T – temperature, K; 
 u – moisture content, %; 
 k(T) ∈ [0.15, 0.20] – thermal conductivity decreasing on T, W·(m·K)-1, in Fig. 8 the 

 thermal conductivity k(T) is represented depending on the temperature T ∈ [0, 1000], ºC 
 using spline approximation; 

 k0 = 0.15 W·(m·K)-1  – the thermal conductivity in the combustor by x = L; 
 cp = 2390 J·(kg·K)-1 – specific heat at a constant pressure ρ = ρ0(1 + u/100); 
 ρ0 = 700 kg·m-3 – density of the wood; 
 q = 2256000 J·m-3 – the heat amount for evaporating of water; 
 σ = 5.67·10-8 J·s-1·m-2·K-4 – Stefan-Boltzmann constant; 
 ε = 0.95 – surface of emissivity; 
 S = 100 cm2 – surface of radiation; 
 F0 = 50 W·(m2·K)-1 – heat flow by x = L; 
 α = 0.1 dm·s-1

 – moisture transfer velocity. 

We use the following parameters: 

 349.1)/( 0 == ρpu cqs , 12
0 102.3)/( −⋅=⋅⋅= ρεσ pT cSs , .333/ 001 == kFf  

We have boundary conditions and initial conditions:  
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For stability of the finite difference approximation the second equation of (9) is written in the 
following form: 

 ( )( ) xuxxuetu p ∂∂+∂∂∂∂=∂∂ //// α ,  (10) 

where εp = 0.5·h·α – the small parameter, the factor of the artificial viscosity for approximation 
 the derivative ∂u/∂x in uniform grid (h = 0.01 – grid step) with upwind difference. 

When performing temperature calculations, we use Kelvin degrees, but the results of these 
calculations are given in degrees of Celsius. 

The numerical experiment for the calculation of temperature and moisture concentrations in the 
wood-burning process was conducted with the Matlab programme “pdepe” and integral exponential 
type spline function (7), based on the experimental data obtained from testing wood samples for the 
European classification with the experimental equipment “SBI” at the Forest Faculty in The Forest and 
Wood Product Research and Development Institution of the Latvia University of Life Sciences and 
Technologies.  

Fig. 9 and Fig. 10 illustrate the change in temperature and moisture concentration depending on 
the time at different places of the wood sample, i.e. at different x-coordinate values. The maximum of 
temperature Tmax = 835.16 ºC and the minimum of moisture content umin = 1.245 % are reached at 
x = 5.  

1    2       3 4 5 6 7   

Fig. 7. Wood burning: 1 – flame; 2 – starting 
surface of the sample; 3 – charred wood;  

4 – pyrolysis; 5– dry wood; 6 – water  
evaporation; 7 – humid wood 

Fig. 8. Thermal conductivity depending on 

temperature T 

 

  

Fig. 9. Profile of temperature depending on t, 

h at x = 0, 3, 5, Tmax = 835.16 ºC 
Fig. 10. Profile of moisture concentration 

depending on t, h at x = 0, 3, 4, 5, min 

u = 1.2445 % 
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Conclusions 

1. On the basis of the results obtained in general terms (case of N-layers), it was proved that the 
exact solution of the studied boundary value problem (BVP), in a linear case, coincides with the 
corresponding approximated solution of the BVP, which in this case was the created exponential 
type spline function. This result is useful not only to solve the 1D boundary value problem (BVP) 
being studied, but also to solve the 3D and 2D BVP by reducing them to a 1D BVP with the 
conservative averaging method, as it allows to solve the acquired 1D BVP through the 
approximated solution (exponential or hyperbolic spline function) also where the exact solution of 
the 1D BVP cannot be obtained. 

2. The nonstationary physical model for simple chemical reaction with temperature and 2 reaction-
diffusion equations characterising the combustion process with Arrhenius kinetics is considered. 
The dependence of the combustion temperature on the axial velocity of fuel at the different values 
of the Levis number is studied. The influence of the molecular diffusivity and thermal 
conductivity on the temperature and reaction rate of the undisturbed flame flow is obtained.  

3. When testing the combustion process with Arrhenius kinetics, based on numerical calculations, 
the following results were obtained. 
• With increasing of the axial velocity w, there was observed the increasing of the maximal 

value of the temperature Tmax for Le > 1 (Le – Lewis number) and the decreasing of Tmax for 
Le < 1, but for Le = 1 – Tmax  was not depended on w. 

• Following an increase in the axial velocity w at other constant parameters (P1, P2, α), a higher 
burning temperature (T) was reached at the relevant points of the combustion chamber and at 
the fixed time values required for comparison. In addition, the experiment resulted in finding 
of the axial speed value w at which the burning temperature remained constant throughout the 
entire phase of the combustion chamber, a very bright (well-visible) extension of the flame 
was visualised. 

4. The spread of temperature and moisture in the wood sample in its burning process has been 
studied by solving the nonlinear system of the parabolic type of PDE being based on the 
experimental data obtained from testing wood samples at the Forest Faculty in The Forest and 
Wood Product Research and Development Institution of the Latvia University of Life Sciences 
and Technologies. The calculation required the use of thermal conductivity dependency on the 
temperature obtained by means of spline interpolation. 
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